
Learning objectives 

• Be able to re-formulate 

Newton's second law when the 

mass is variable. 

• Understand the concept of 

impulse and be able to analyse 

force-time graphs. 

• Be able to derive and apply 

the law of conservation of 

momentum. 

• Analyse elastic and inelastic 

collisions and explosions. 

2.4 Momentum and impulse 
This section introduces the concept oflinear momentum, which is a very 

useful and powerful concept in physics. Newton's second law is expressed 

in terms of momentum. The law of conservation of linear momentum 

makes it possible to predict the outcomes in very many physical situations. 

Newton's second law in terms of momentum 
We saw earlier that Newton's second law was expressed as Fnet = ma. In 

fact, this equation is only valid when the mass of the system remains 

constant. But there are plenty of situations where the mass does not remain 

constant. In cases where the mass changes, a different version of the 

second law must be used. Examples include: 

• the motion of a rocket, where the mass decreases due to burnt fuel 

ejected away from the rocket 

• sand falling on a conveyor belt so the mass increases 

• a droplet of water falling through mist and increasing in mass as more 

water condenses. 

We defme a new concept, linear momentum, p, to be the product of 

the mass of a body times its velocity: 

p=mv 

Momentum is a vector and has the direction of the velocity. Its unit is 

kgms-1 or the equivalent Ns. 

In terms of momentum, Newton's second law is: 

-~ 
Fnet- f:.t 

The average net force on a system is equal to the rate of change 

of the momentum of the system. 

It is easy to see that if the mass stays constant, then this version reduces to 

the usual ma: 

F = ~ = Pfina! - Pinitia! 
net f:.t f:.t 

mVfmal- mvinitial 

f:.t 

= m (vfinal- Vinitial ) 
( ,. f:.t 

mf:.v 

f:.t 

Fnet = ma 



Worked examples 
2.45 A cart moves in a horizontal line with constant 

speed v. Rain starts to fall and the cart fills with 

water at a rate of a kg s - 1
. (This means that in one! 

second, a kg have fallen on the cart.) The cart 

must keep moving at constant speed. Determine 

the force that must be applied on the cart. 

· ' 

Exam tip 
Worked example 2.45 should alert you 

right away that you must be careful when 

mass changes. Zero acceleration does not • 

imply zero net force in this case. 

Notice right away that if Fnet =rna (we drop the bold italic of the vector notation) were valid, the force would have 

to be zero since the car is not accelerating. But we do need a force to act on the cart because the momentum of 

the cart is increasing (because the mass is increasing). This force is: 

F _QE_ t:..(mv) _ vt:..m _ 
net - f..t - !:..t - !:..t - VCJ 

Putting some real values in, if a= 0.20kgs - 1 and v= 3.5ms-1
• the force would have to be 0.70N. 

2.46 Gravel falls vertically on a conveyor belt at a rate 

of akgs-\ as shown in Figure 2.76. 

This very popular exam question is 

similar to Worked example 2.45, but 

is worth doing again. 

a Determine: 

Figure 2.76 

the force that must be applied on the belt to keep it moving at constant speed v 

ii the power that must be supplied by the motor turning the belt 

iii the rate at which the kinetic energy of the gravel is changing. 

b Explain why the answers to a ii and a iii are different. 

a The force is: 

F _QE_ t:..(mv) _ vt:..m _ 
net - !:..t - !:..t - f..t - VCJ 

ii The power is found from P= Fv. Substituting for F: 

P=(va)v=ai 

iii In 1 second the mass on the belt increases by a kg. The kineti~ energy of this mass is: 

E _ 1 2 
K -2av 

, This is the increase in kinetic energy in a time of 1 s, so the rate of kinetic energy increase is ~ai. 

b The rate of increase in kinetic energy is less than the power supplied. This is because the power supplied by the 

motor goes to increase the kinetic energy of the gravel and also to provide the energy needed to accelerate the 

gravel from 0 to speed v in the short interval of time when the gravel slides on the belt before achieving the 

constant final speed v. 
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2.47 A 0.50kg ball is dropped from rest above a hard floor. When it reaches the floor it has a velocity of 4.0ms-1
. 

T he ball then bounces vertically upwards. Figure 2. 77 is the graph of velocity against ti1ne for the ball. The 

p ositive direction for velocity is upwards. 

a Find the magnitude of the momentum change of the ball during the bounce. 

b The ball stayed in contact with the floor for 0.15 s.What average force did the floor exert on the ball? 

v/ ms-1 

4.0 

- 2.0 

Figure 2.77 

reaction force R 1 
weight mgT 

a The momentum when the ball hits the floor is: 0 .50 X 4.0 = 2.0 N s 

The momentum when the ball rebounds from the floor is: 0.50 X ( -2.0) = - 1.0 N s 

The magnitude of the momentum change is therefore 3.0Ns. 

b The forces on the ball are its weight and the reaction from the floor, R. 

Fner=R -mg 

This is also the force that produces the change in momentum: 

Substituting in this equation: 

. 3.0 
Fnet = 0.15 =20N 

We need to find R, so: 

R=20+5 .0=25N. 

The average force exerted on the ball by the floor is 25 N. 

. , 
•.-, 
'1'J., 

, . 

Exam tip 
This is a very tricky problem with lots of 

possibilities for error. A lot of people forget 

to include the minus sign in the rebound 

velocity and also forget the weight, so they 

answer incorrectly that R = 20 N . 



Impulse and force-time graphs 
We may rearrange the equation: 

to get: 

The quantity Fner11t is called the impulse of the force, and is usually 

denoted by]. It is the product of the average force times the time 

for which the force acts. The impulse is also equal to the change in 

momentum. Notice that impulse is a vector whose direction is the same as 

that of the force (or the change in momentum). 

When you jump from a height of, say, 1m, you will land on the 

ground with a speed of about 4.5 ms -l. Assuming your mass is 60 kg, your 

momentum just before landing will be 270 N s and will become zero after 

you land. From Fnet = ;; , this can be achieved with a small force acting for 

a long time or large force acting for a short time. You will experience the 

large force if you do not bend your knees upon landing - keeping your 

knees stiff means that you will come to rest in a short time. This means l1t 

will be very small and the force large (which may damage your knees). 

The three graphs of Figure 2. 78 show three different force-time 

graphs. Figure 2. 78a shows a '(non- constant) force that increases from 

zero, reaches a maximum value and then drops to zero again. The force 

acted for a time interval of about 2 ms. The impulse is the area under 

the curve. Without calculus we can only estimate this area by tediously 

counting squares: each small square has area 0.1 ms X 0.2 N = 2 x 10-5 N s. 

T here are about 160 full squares under the curve and so the impulse is 
3 x 10- 3 N s. (In this case it is not a bad approximation to consider the 

shape under the curve to be a triangle but with a base of 1.3 ms so that 

the area is then~ x 1.3 x 10- 3 x 4"" 3 x 10- 3 N s.) 

In the second graph, the force is constant (Figure 2.78b). T he impulse 

of the force is 6.0 X (8.0- 2.0) = 36 N s. Suppose this force acts on a body 

of mass 12 kg, initially at rest. Then the speed v of the body after the force 

stops acting can be found from: 

L1p=36Ns 

mv-0=36Ns 

-36 - - 1 v-
12

-3.0ms 
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Figure 2.78 Three different force-time 
graphs: a non-constant force, b constant 
force; c force that varies linearly with time. 
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Worked examples 
2.48 Consider the graph of Figure 2. 78c. The force acts on a body of mass 3.0 kg initially at rest. Calculate : 

a the initial acceleration of the body 

b the speed at 4.0 s 

c the speed at 6. 0 s. 

a The initial acceleration a is at t= O, when F= 12N. 

_ F _ 12 _ _2 a - - ---4.0ms 
111 3.0 

b T he impulse from 0 s to 4.0 sis the area under this part of the graph: 

~ X 4 .0X12=24Ns 

This is equal to the change in momentum. 

Let v be the speed at 4.0 s. As the body is initially at rest, the momentum change is: 

111v-0=24 

_ 24 - 24 - - 1 So v- - - - -8.0ms 
111 3.0 

c The impulse from 0 s to 6.0 s is the area under the graph, which includes part above the axis and part below the 

axis. The part under the axis is negative, as the force is negative here, so the impulse is: 

~X 4,0 X 12-~X 2.0 X 6.0= 18Ns 

Hence the speed at 6 .0s is v = ;_~ = 6.0ms- 1 . 

2.49 A ball of mass 0 .20kg moving at 3.6ms- 1 on a horizontal floor collides with a vertical wall. The ball 

rebounds with a speed of3 .2ms-1.The ball was in contact with the wall for 12ms. Determine the maximum 

force exerted on the ball, assuming that the force depends on time according to Figure 2.79. 

0 

Figure 2.79 



Let the initial velocity be positive. The rebound velocity is then negative. 

Initial momentum: 0. 20 X 3. 6 = 0. 72 N s 

Final momentum: 0.20 X (-3.2) = - 0.64Ns 

The change in momentum of the ball is: 

-0.64- 0.72= -1.36Ns 

The magnitude of the change in momentum is equal to the area under the force-time graph. 

The area is~ X 12 X 10-3 
X Fmax and so: 

~X 12 X 10-3 
X Fmax= 1.36Ns 

~ Fmax= 0.227 X 103 ""2.3 X 102 N 

Conservation of momentum 
Consider a system with momentum p. The net force on the system is: 

-~ Fnet- tJ.t 

and so if Fnet = 0 it follows that tJ.p = 0. There is no change in momentum. 

This is expressed as the law of conservation of momentum: 

When the net force on a system is zero the momentum does not 

change, i.e. it stays the same. We say it is conserved. 

Notice that 'system' may refer to a single body or a collection of many 

different bodies. 

Let us consider the blue block of mass 4.0kg moving at speed 6.0ms-1 

to the right shown in Figure 2.80. The blue block collides with the red 

block of mass 8. 0 kg that is initially at rest. After the collision the two 

blocks move off together. 

As the blocks collide, each will exert a force on the other. By Newton's 

third law, the magnitude of the force on each block is the same. There 

are no forces that come from outside the system, i.e. no external forces. 

You might say that the weights of the blocks are forces that come from 

the outside. That is correct, but the weights are cancelled by the normal 

reaction forces from the table. So the net external force on the system is 

zero. Hence we expect that the total momentum will stay the same. 

The total momentum before the collision is: 

' 
4.0 X 6.0 + 8.0 X 0=24N s 

The total momentum after the collision is: 

(4.0 + 8.0) X v = 12v 

where v is the common speed of the two blocks. 

I 
I 
I 
I 

/ 
/ 

I 

\ 
\ 

' 

6.0 ms-1 

4.0 kg 

/ 

' 

---
Figure 2.80 In a collision with no external 
forces acting, the total momentum of the 
system stays the same. 
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8.0 kg 

4.0 kg 

2.0 ms-1 v 

Figure 2.81 An outcome of the collision in 
which total kinetic energy stays the same. 

Equating the momentum after the collision and the momentum before 

the collision : 

12v=24 

~ v=2.0ms- 1 

The kinetic energy before the collision is: 

Mter the collision the kinetic energy is: 

It appears that 48] has been 'lost' (into other forms of energy, e.g. thermal 

energy in the blocks themselves and the surrounding air or energy to 

deform the bodies during the collision and some to sound generated in 

the collision). 

But consider now the outcome of the collision of these two blocks in 

which the blue block rebounds with speed 2.0ms- \ as shown in Figure 

2.81. The red block moves off in the original direction with speed v. 

What is the speed of the red block? As before, the total momentum 

before the collision is 24 N s. The total momentum after the collision is 

(watch the minus sign): 

(4.0 X -2.0) + (8.0 X v) 
blue block red block 

Equating the total momentum before and after the collision we find: 

- 8.0 + 8.0 x v= 24 

This gives v = 4.0 ms -l. 

The total kinetic energy after the collision is then: 

~X 4.0 X (-2.0)2 +~X 8.0 X 4.02 = 72] 
blue block red block 

This is the same as the initial kinetic energy. 

So, in a collision the momentum is always conserved but kinetic energy 

may or may not be conserved.You will find out more about this in the 

next section. 

r:i:\ Predicting outcomes W Physics is supposed to be able to predict outcomes. So why 

is there mon!'than one outcome in the collision of Figure 2.80? 

Physics does predict what happens, but more information about the 

nature of the colliding bodies is needed. We need to know if they 

are soft or hard, deformable or not, sticky or breakable, etc. If this 

information is given physics will uniquely predict what will happen. 



Kinetic energy and momentum 
We have seen that, in a collision or explosion where no external forces are 

present, the total momentum of the system is conserved. You can easily 

convince yourself that in the three collisions illustrated in figure 2.82 

momentum is conserved. The incoming body has mass 8.0J:g ar1d the 

other a mass of 12 kg. 

---------------- ---- --- ---1 I ~- -- ------- - - - - --- - ------- - --, 

I 
I 
I 

before : 
1 n - J-:::---::-t ...... - .,..!o::a 
I 
I 
I 
I 
I 
I 
I 

8 kg 

after : 
l r----=~==:L..,.,!,"""".....,.,b 
I 
I 
I 2 

Figure 2.82 Momentum is conserved in these three collisions. 

Let us examine these collisions from the point of view of energy. 

In all cases the total kinetic energy before the collision is: 

The total kinetic energy after the collision in each case is: 

case 1: EK =~ x 20 x 42 = 160] 

case 2: EK =~X 8.0 X 1 2 +~ X 12 X 62
= 220] 

case 3: EK=~X 8.0 X 22 +~X 12 X 82
= 400] 

We thus observe that whereas momentum is conserved in all cases, 

kinetic energy is not. When kinetic energy is conserved (case 3), the 

collision is said to be elastic. When it is not (cases 1 and 2), the collision 

is inelastic. In an inelastic collision, kinetic energy is lost. When the bodies 

stick together after a collision (case 1), the collision is said to be totally 

inelastic (or plastic), and in this case the maximum possible kinetic 

energy is lost. 

The lost kinetic energy is transformed into other forms of energy, such 

as thermal energy, deformation energy (if the bodies are permanently 

deformed as a result of the collision) and sound energy. 

Notice that using momentum, we can obtain a useful additional 

formula for kinetic energy: 

1 m2v2 

EK=-mv2=--
2 2m 

2 
E - 1!__ 

K-2m 

I 
I 
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Worked examples 
2.50 A moving body of m ass m collides with a stationary body of double the mass and sticks to it. Calculate the 

fraction of the original kinetic energy that is lost. 

The original kinetic energy is ~mv2 where v is the speed of the incoming mass. After the collision the two bodies 

move as one with speed u that can be found from momentum conservation: 

mv= (m+2m)u 

v 
u=-

3 

T he total kinetic energy after the collision is therefore: 

1(3 ) (vJ
2 

_ mv2 

- m x- --
2 3 6 

and so the lost kinetic energy is 

2 6 

? mv-
3 

The fraction of the original energy that is lost is thus 

mv213 2 ---mv212 3 

2.51 A body at rest of mass M explodes into two pieces of masses M l 4 and 3MI4. Calculate the ratio of the 

kinetic energies of the two fragments. 

2 

Here it pays to use the formula for kinetic energy in terms of momentum: EK = L
2 

. The total momentum before 
m 

the explosion is zero, so it is zero after as well. Thus, the two fragments must have equal and opposite momenta. 

Hence: 

Elight _ p2 I (2Mlight) 
Eheavy (-p)2 I (2Mheavy) 

Elight = Mheavy , 
Eheavy Mlight. 

Elight =3MI4 
Eheavy Ml 4 

. -.,_ 
- .'<:· 

, . 



It all depends on the system! 
Consider a ball that you drop from rest from a certain height. As the ball 

falls, its speed and hence its momentum increases so momentum does not 

stay the same (Figure 2.83) . 
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Figure 2.83 As the ball falls, an external force acts on it (its weight), increasing its 
momentum. 

This is to be expected - there is an external force on the ball, namely 

its weight. So the momentum of the system that consists of just the falling 

ball is not conserved. If we include the Earth as part of the system then 

there are no external forces and the total momentum will be conserved. 

This means that the Earth moves up a bit as the ball falls! 

The rocket equation 
The best example of motion with varying mass is, of course, the rocket 

(Figure 2.84). 

This is quite a complex topic and is included here only as 

supplementary material. The rocket moves with speed v. The engine is 

turned on and gases leave the rocket with speed u relative to the rocket. 

The initial mass of the rocket including the fuel is M. Mter a short time ot 
the rocket has ejected fuel of mass om. The mass of the rocket is therefore 

reduced to M- om and its speed increased to v + OV (Figure 2. 85). 

M 

u-(v+ov) • om 
M-om 

V+OV --
Figure 2.85 Diagram for deriving the rocket equation. The velocities are relative to an 
observer'at rest on the ground'. 

Figure 2.84 Exhaust gases from the booster 
rockets propel this space shuttle during its 
launch. 
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Applying the law of conservation of momentum gives (in the equation 

below terms shaded the same colour cancel out): 

Mv =(M -8m)(v +8v) -8m (u-v-8v) 
'-v---' 

speed relative to ground 

Mv = Mv + Mbv- v8m- 8m8v - ubm + v8m + 8m8v 

M8v=u8m 

8v= 8m 
Mu 

This gives the change in speed of the rocket as a result of gases leaving 

with speed u relative to the rocket. At time t the mass of the rocket is M. 

Dividing by 8t and taking the limit as 8t goes to zero gives the rocket 

differential equation: 

where !I is the rate at which mass is being ejected. 

Nature of science 
General principles such as the conservation of momentum allow for 

simple and quick solutions to problems that may otherwise look complex. 

Consider, for example, a man of mass m who stands on a plank also of 

mass m. There is no friction between the floor and the plank. A man starts 

walking on the plank until he get gets to the other end, at which point he 

stops. What happens to the plank? 

The cen_tre of mass must remain in the same place since there is no 

external force. So the final position of the plank will be as shown in 

Figure 2.86: the plank moves half its length to the left and stops. 

7 

~~ 

Figure 2.86 Conservation of momentum. 

The same pr~nciples can be extended to analyse and predict the 

outcomes of a wide range of physical interactions, from large-scale motion 

to microscopic collisions . 



, 
• Test yourself 
The momentum of a ball increased by 12.0 N s as 

a result of a force that acted on the ball for 2.00s. 

Find the average force on the ball. 

73 A 0.150kg ball moving horizontally at 3.00ms- 1 
, I 

collides normally with a vertical wall and 

bounces back with the same speed. 

a Calculate the impulse delivered to the ball. 

b The ball was in contact with the wall for 

0.125 s. Find the average force exerted by the 

ball on the wall. 

74 The bodies in the diagram suffer a head-on 

collision and stick to each other afterwards. Find 

their common velocity. 

m 
v 

v 
2 

75 A ball of mass 250 g rolling on a horizontal floor 
with a speed 4.00ms- 1 hits a wall and bounces 

with the same speed, as shown in the diagram. 

~~------~~~--------~ 
' I ' 

// I ', 
/ I ' 

' I ' 
' 45' I 45' 

I 

a What is the magnitude and direction of the 

momentum change of the ball? 

b Is momentum conserved here? Why or why 

not? 

76 Two masses moving in a straight line towards 

each other collide as shown in the diagram. Find 

the velocity (magnitude and direction) of the 

heavier mass after the collision. 

before after 

24.0 ms-1 2.0 ms-1 3.0 ms-1 v=? 

77 A time-varying force varies with time as shown in 

the graph. The force acts on a body of mass 4.0 kg. 

a Find the impulse of the force from t = 0 to 

t= 15 s. 

b Find the speed of the mass at 15 s, assuming tlie 

initial velocity was zero. 

c State the initial velocity of the body such it is 

brought to rest at 15 s. 
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78 A boy rides on a scooter pushing on the road 

with one foot with a horizontal force th<~;t 

depends on time, as shown in the graph. While 
) 

20 
tis 

the scooter rolls, a constant force of 25 N opposes 

the motion. The combined mass of the boy and 

scooter is 25 kg. 

a Find the speed of the boy after 4.0 s, assuming 

he started from rest. 

b Draw a graph to represent the variation of the 

boy's speed with time. 
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79 A ball of mass m is dropped from a height of h1 
and rebounds to a height of h2 . The ball is in 

contact with the floor for a time interval oft. 

a Show that the average net force on the ball is 

given by: 

- ~+~ F-m 
2 

b If h1 = 8.0m, h2 = 6.0m, t= 0.125 sand 

m = 0.250 kg, calculate the average force 

exerted by the ball on the floor. 

-
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80 A ball of mass m moving vertically, hits a 

horizontal floor normally with speed v1 and 

rebounds with speed v2. The ball was in contact 

with the floor for a time t. 

a Show that the average force F on the ball 

from the floor during the collision is given by: 

F 
m(v1 +v2) = +mg 

t 
b Find an expression for the average net force 

on the ball. 

81 The diagram shows the variation with time of 

the force exerted on a ball as the ball came into 

contact with a spring. 
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a For how long was the spring in contact with 
'-

the ball? 

b Estimate the magnitude of the change in 

momentum of the ball. 

c What was the average force that was exerted 

on the ball? 

82 Two masses of2.0kg and 4.0kg are held in place, 

compressing a spring between them. When they 

are released, the 2.0 kg moves away with a speed 

of3 .0ms- 1.What was the energy stored in the 

spring? 

83 A rocket in space where gravity is negligible has 

a mass (including fuel) of 5000 kg. It is desired 

to give the rocket an average acceleration of 

15.0 m s - 2 during the first second of firing the 

engine. The gases leave the rocket at a speed of 

1500 m s - l (relative to the rocket). Estimate how 

much fuel must be burnt in that second. 




