

The slope of the above graph tells us the acceleration of an object. Let $\mathbf{u}=$ velocity at P , and $\mathbf{v}=$ velocity at Q. Since slope $=\mathbf{a}$,

$$
\begin{equation*}
\boldsymbol{a}=\frac{\boldsymbol{v}-\boldsymbol{u}}{t} \quad \text { or } \quad \boldsymbol{v}=\boldsymbol{u}+\boldsymbol{a} t \tag{EQN1}
\end{equation*}
$$

The area under the graph is the area of the rectangle OPRS (which has height u and length t), plus the area of triangle PQR on top of it. This area is the object's displacement, s:

$$
\boldsymbol{s}=\boldsymbol{u} t+\frac{1}{2}(\boldsymbol{v}-\boldsymbol{u}) t
$$

substituting at for (v-u) from (EQN 1) gives:

$$
\begin{equation*}
\boldsymbol{s}=\boldsymbol{u} t+\frac{1}{2} \boldsymbol{a} t^{2} \tag{EQN2}
\end{equation*}
$$

Now since the object's average velocity can be calculated from its displacement and time, we can also calculate the object's displacement from its average velocity:

$$
\begin{equation*}
\boldsymbol{v}_{\text {ave }}=\frac{\Delta \boldsymbol{s}}{\Delta t}=\frac{v+\boldsymbol{u}}{2} \quad \text { or } \quad \boldsymbol{s}=\frac{(\boldsymbol{v}+\boldsymbol{u}) t}{2} \tag{EQN3}
\end{equation*}
$$

Finally, equations 1 and 3 can be combined. Rearrange equation 1: $\quad t=\frac{\boldsymbol{v}-\boldsymbol{u}}{\boldsymbol{a}}$
Substitute this expression for t into equation 3 and rearrange:
$\boldsymbol{s}=\frac{(v+u)}{2} \frac{(v-u)}{a} \quad$ giving $\quad 2 a s=(v+u)(v-u) \quad$ or $\quad v^{2}=u^{2}+2 \boldsymbol{a} \boldsymbol{s}$
Now refer to the equations of motion as given to you in your IB data booklet. Same?

SOLVING EQUATIONS OF MOTION PROBLEMS:

1. Write a suvat table, and fill it in.
2. Identify the equation(s) you can use based on what you know.
3. Solve it! (and check your answers if you have time).
