12.2 NUCLEAR PHYSICS

HW/Study Packet

HL	
Required:	Supplemental:
READ Tsokos (6 th Ed), pp 505-515	Cutnell and Johnson, pp 652-652, 970-973

REMEMBER TO

- ✓ Work through all of the 'example problems' in the texts as you are reading them
- ✓ Refer to the **IB Physics Guide** for details on what you need to know about this topic
- Refer to the Study Guides for suggested exercises to do each night
- First try to do these problems using only what is provided to you from the **IB Data Booklet**
- ✓ Refer to the solutions/key ONLY after you have attempted the problems to the best of your ability

UNIT OUTLINE

I. DETERMINING NUCLEAR SIZES

- A. DETERMINING RADII
- B. DETERMINING MASSES
- C. DETERMINING NUCLEAR ENERGY LEVELS

II. RADIOACTIVE DECAY

- A. BETA DECAY AND NEUTRINOS
- B. THE RADIOACTIVE DECAY LAW

FROM THE IB DATA BOOKLET

$$R = R_0 A^{1/3} \qquad A = \lambda N_0 e^{-\lambda t}$$
$$N = N_0 e^{-\lambda t} \qquad \sin \theta \approx \frac{\lambda}{D}$$

WHAT YOU SHOULD BE ABLE TO DO AT THE END OF THIS TOPIC

- □ Solve problems of closest approach and understand how nuclei have well-defined radii
- Describe a scattering experiment including location of minimum intensity for diffracted particles based on their de Broglie wavelength
- Explain deviations from Rutherford scattering in high energy experiments
- Explain how radii of nuclei may be estimated from charged particle scattering experiments
- Describe a mass spectrometer, how it can be used to determine masses of nuclei, and its implications for isotope existence
- Describe evidence for the existence of nuclear energy levels
- $\hfill\square$ Discuss β^{*} decay and the theoretical arguments that have been used to postulate the existence of the neutrino
- Use the radioactive decay laws in solving problems
- Derive the relationship between half-life and decay constant and be able to use them in solving problems
- □ Understand that the decay constant is a probability of decay per unit time
- Describe methods of obtaining short and long half-lives from experimental data

HOMEWORK PROBLEMS:

1. An experiment is carried out in which alpha (α) particles of initial kinetic energy 5.0 MeV are fired at a piece of gold foil. The proton number of gold is 79. Determine the distance of closest approach of an alpha (α) particle to a gold nucleus. [4.5 × 10⁻¹⁴ m]

- **2.** A charged particle enters a uniform magnetic field and follows the circular path shown.
 - a) Is the particle positively or negatively charged? Why?

b) The particle's speed is 140 m/s, the magnitude of the magnetic field is
0.48 T, and the radius of the path is 960 m. Determine the mass of the particle, given that its charge has a magnitude of 8.2 × 10⁻⁴ C. [2.7 × 10⁻³ kg]

3. The solar wind is a thin, hot gas given off by the sun. Charged particles in this gas enter the magnetic field of the earth and can experience a magnetic force. Suppose that a charged particle traveling with a speed of 9.0×10^6 m/s encounters the earth's magnetic field at an altitude where the field has a magnitude of 1.2×10^{-7} T. Assuming that the particle's velocity is perpendicular to the magnetic field, find the radius of the circular path on which the particle would move if it were a) an electron [4.3 × 10² m]

b) a proton

[7.8 × 10⁵ m]

4. The diagram is a schematic representation of the Bainbridge mass spectrometer. Positive ions are injected between the plates of the speed selector. Describe the direction of the magnetic fields B1 and B₂ and explain your answers fully. [both fields out of the page] photographic plate **B**₂ B (out of paper) 5. When beryllium-7 ions pass through a mass spectrometer, a uniform magnetic field of 0.283 T curves their path directly to the center of the detector as shown. For the same accelerating potential difference, what magnetic field should be used to send beryllium-10 ions to the same location in the detector? Both types of ions are singly ionized. [0.338 T] Metal plate Detector lon source

6. Two isotopes of carbon, carbon-12 and carbon-13, have masses of 19.93×10^{-27} kg and 21.59×10^{-27} kg, respectively. These two isotopes are singly ionized (+e) and each is given a speed of 6.667×10^5 m/s. The ions then enter the bending region of a mass spectrometer where the magnetic field is 0.8500 T. Determine the spatial separation between the two isotopes after they have traveled through $[1.63 \times 10^{-2} \text{ m}]$ a half-circle.

ions

- 7. The activity of a freshly prepared sample of bismuth-212 is 2.80×10^{13} Bq. After 80.0 minutes the activity is 1.13×10^{13} Bq. Determine the half-life of bismuth-212. [61.1 min]
- A radioactive emitter I 132 has a half-life of 2.3 hours. Calculate the mass needed initially to produce an activity of 6 kBq.
 [1.58 × 10⁻¹⁴ g]

- **9.** Initially the number of atoms in a radioactive element X is 2.000×10^{21} . Its half-life is 4 hours.
 - a) Calculate the number of atoms which have disintegrated in 6 hours. $[1.292 \times 10^{21}]$
 - If the energy liberated per decay is 3.0×10^{-13} J, find b) the total energy liberated. [390 × 10⁶J]
 - c) the average power developed. $[18 \times 10^3 W]$

- **10.** Radium-222 disintegrates initially at a rate of 5.00 kBq. If the decay constant is $2.00 \times 10^{-6} \text{ s}^{-1}$, a) determine the half-life. [4 days]
 - b) calculate the initial mass of the element. $[9.25 \times 10^{-13} \text{ g}]$

11. The diagram shows some of the nuclear energy levels of the boron isotope ${}^{12}_{5}B$ and the carbon

isotope ${}^{12}_6$ C. Differences in energy between the levels are indicated on the diagram. A particular beta decay of boron and a gamma decay of carbon are marked on the diagram.

a) Calculate the wavelength of the photon emitted in the gamma decay. $[2.8 \times 10^{-13} \text{ m}]$

- b) Calculate the maximum kinetic energy of the electron emitted in the beta decay indicated. [9.0 MeV]
- c) Explain why the electrons emitted in the indicated beta decay of boron do not always have the kinetic energy calculated in (b).