7.2 RADIOACTIVE DECAY

HW/Study Packet

SL/HL

Required:	Supplemental:
Tsokos, pp 373-378	Cutnell and Johnson, pp 963-979, 986-990
Hamper pp 244-255	

REMEMBER TO....

- ✓ Work through all of the 'example problems' in the texts as you are reading them
- ✓ Refer to the **IB Physics Guide** for details on what you need to know about this topic
- Refer to the Study Guides for suggested exercises to do each night
- First try to do these problems using only what is provided to you from the **IB Data Booklet**
- Refer to the solutions/key ONLY after you have attempted the problems to the best of your ability

UNIT OUTLINE

I. RADIOACTIVITY

- A. RADIOACTIVE DECAY WHAT HAPPENS?
- B. BIOLOGICAL EFFECTS OF IONIZING RADIATION

II. TIMESCALES OF RADIOACTIVE DECAY

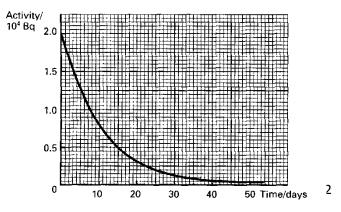
- A. HALF-LIFE
- B. DECAY CURVES

FROM THE IB DATA BOOKLET

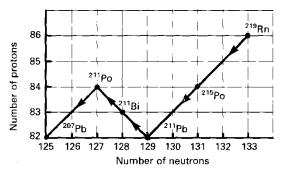
Nothing explicitly useful for this topic.

WHAT YOU SHOULD BE ABLE TO DO AT THE END OF THIS TOPIC

- Describe the phenomenon of radioactive decay alpha, beta, and gamma radiations.
- Describe the biological effects of ionizing radiation direct and indirect effects.
- Explain what makes some nuclei stable and others unstable in terms of relative numbers of protons, neutrons and forces involved.
- Define half-life and determine it from a decay curve.
- □ Recognize that the rate of decay decreases exponentially with time.


HOMEWORK PROBLEMS:

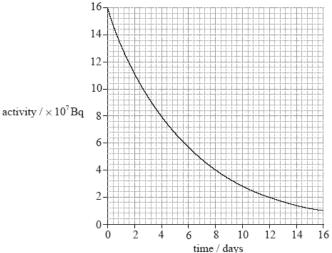
- 1. For each of the following write the nuclear equation for the decay
 - a) When $^{234}_{90}Th$ decays to $^{234}_{91}Pa$
 - b) When ${}^{234}_{91}Pa$ decays to ${}^{234}_{92}U$
 - c) When $\frac{^{234}}{_{92}}U$ decays to $\frac{^{230}}{_{90}}Th$
- 2. Write out the nuclear equation of the following given that
 - a) $^{218}_{84}Po$ decays to Pb by emitting an alpha particle
 - b) ${}^{211}_{83}Bi$ decays to *Po* by emitting a beta particle
 - c) $^{211}_{83}Bi$ decays to *TI* by emitting an alpha particle
- 3. The radioactive isotope Po 84, emits an α -particle according to the equation below when it decays


²¹⁸₈₄Po
$$\rightarrow \alpha + {}^{x}_{y}$$
Pb.

What are the values of x and y?

- 4. What is the wavelength (in a vacuum) of the 0.186-MeV γ -ray photon emitted by radium ²²⁶₈₈Ra ? [6.68 x 10⁻¹² m]
- 5. A sample of iodine contains atoms of the radioactive isotope iodine 131, 131 I, and atoms of the stable isotope iodine 127. Iodine has a proton number of 52 and the radioactive isotope decays into xenon 131 (131 Xe) with the emission of a single negatively charged particle.
 - a) State the similarities and differences in composition of the nuclei of the two isotopes of iodine.
 - b) What particle is emitted when iodine 131 decays? Write the nuclear equation which represents the decay.
 - c) The diagram shows how the activity of a freshly prepared sample of the iodine varies with time. Calculate the half-life of iodine 131

6. A decay sequence for a radioactive atom of radon-219 to a stable lead-207 atom is as shown below.


- a) What do the numbers on the symbol $\frac{207}{82}$ Pb represent?
- b) i) Write down a nuclear equation representing the decay of $^{219}_{86}Rn$ to $^{215}_{84}Po$

ii) Write down the name of the particle which is emitted in this decay.

- c) i) What particle is emitted when ${}^{211}_{83}Bidecays?$
 - ii) What happens within the nucleus to cause this decay?
- d) The half-life of $^{219}_{86}$ Rn is 4.0 seconds. At a time t = 20 seconds, what fraction of the radon atoms present at time t = 0, will be 'undecayed'? [1/64]

7.	7. Suppose that 3.0×10^7 radon atoms are trapped in a basement at the time the basement is seal	
	against any further entry of the gas. The half-life of radon is 3.83 days. a) How many radon atoms remain after 31 days?	[1.2 x 10⁵]
	b) Find the activity at the time the basement is sealed.	[60 Bq]
	c) Find the activity after 31 days.	[0.23 Bq]

- 8. lodine-124 (I-124) is an unstable radioisotope with proton number 53. It undergoes beta plus decay to form an isotope of tellurium (Te).
 - a) State the reaction for the decay of the I-124 nuclide.
 - b) The graph shows how the activity of a sample of iodine-124 changes with time.
 - i) State the half-life of iodine-124. [4 days]
 - ii) Calculate the activity of the sample at 21 days. **[4.2 x 10⁶ Bq]**

- iii) A sample of an unknown radioisotope has a half-life twice that of iodine-124 and the time / days same initial activity as the sample of iodine-124. On the axes, draw a graph to show how the activity of the sample would change with time. Label this graph X.
- iv) A second sample of iodine-124 has half the initial activity as the original sample of iodine-124. On the axes opposite, draw a graph to show how the activity of this sample would change with time. Label this graph Y.
- **9.** In a β^+ (positron) decay, a positron is emitted along with a neutrino, and a γ -ray photon. Although the energy spectrum for γ -rays involved is discrete, the energy spectrum for the positrons is continuous.
 - a) State the difference between a discrete energy spectrum and a continuous energy spectrum.
 - b) Explain how the existence of the neutrino accounts for the continuous nature of the positron energy spectrum.

- c) Sodium-22 is a radioisotope used in nuclear medicine that undergoes β^+ decay. The half-life of sodium-22 is 2.6 years. A sample of sodium-22 has an initial activity of 6.2 × 10^9 Bq.
 - i) Calculate the decay constant of sodium-22. [0.27 yr⁻¹]
 - ii) Calculate the activity of the sample of sodium-22 after 8.0 years. $[7.2 \times 10^8 \text{ Bq}]$
- **10.** A nucleus of radium-91 (${}^{226}_{91}$ Ra) undergoes alpha particle decay to form a nucleus of radon (Rn).
 - a) Identify the proton number and nucleon number of the nucleus of Rn. [89,222]
 - b) Immediately after the decay of a stationary radium nucleus, the alpha particle and the radon nucleus move off in opposite directions and at different speeds as shown.

$(\alpha) (radon) \rightarrow$

[~56]	1

Determine the ratio <u>initial kinetic energy of alpha particle</u> <u>initial kinetic energy of radon atom</u>

c) The initial kinetic energy of the alpha particle is 4.9 MeV. As the alpha particle passes through air, it loses all its kinetic energy by causing the ionization of 1.7×10^5 air molecules. Estimate, in joules, the average energy needed to ionize an air molecule. **[4.6 x 10⁻¹⁸ J]**

d) Explain why a beta particle has a longer range in air than an alpha particle of the same energy.