1.1 MEASUREMENT IN PHYSICS

HW/Study Packet

SL/HL

Required:	Supplemental:					
READ Hamper, pp 2-6, pp 14-15	READ Cutnell and Johnson, pp 1-6					
Tsokos, pp 1-5, pp 11-12	DO Tsokos questions:					
Mars Climate Orbiter Reading	pp 6-7: #5, 8, 9, 18, 19, 20, 21, 25, 31					
Cleaning the Kilogram	pp 19-20: #5, 8, 10					
The Higgs Boson						

REMEMBER TO

- ✓ Work through all of the 'example problems' in the texts as you are reading them
- Refer to the IB Physics Guide for details on what you need to know about this topic
- Refer to the Study Guides for suggested exercises to do each night
- ✓ First try to do these problems using only what is provided to you from the **IB Data Booklet**
- Refer to the solutions/key ONLY after you have attempted the problems to the best of your ability

UNIT OUTLINE

I. MAGNITUDES AND QUANTITIES IN THE UNIVERSE

- A. ORDERS OF MAGNITUDE, POWERS OF 10, AND PREFIXES
- B. RANGES OF MAGNITUDES
- C. RATIOS AND ESTIMATING
- D. SIGNIFICANT FIGURES

II. UNITS OF MEASURE AND THE SI SYSTEM

- A. FUNDAMENTAL AND DERIVED UNITS
- **B. DIMENSIONAL ANALYSIS**

FROM THE IB DATA BOOKLET

Prefix	Abbreviation	Value		1	
peta	р	1015	deci	d	10-1
tera	т	1012	centi	c	10-2
			milli	m	10-3
giga	G	109	micro	μ	10-6
mega	М	106			
kilo	k	10 ³	nano	n	10-9
hecto	h	10 ²	pico	р	10-12
deca	da	101	femto	f	10-15

WHAT YOU SHOULD BE ABLE TO DO AT THE END OF THIS TOPIC

π

- □ Estimate the various orders of magnitude and perform mental order-of-magnitude calculations
- □ Understand the need for and be able to apply simplifying assumptions in various situations
- Recognize the difference between fundamental and derived units
- Recognize the difference between units and quantities
- □ Be able to express answers with the proper number of significant figures
- Be able to use dimensional analysis to verify an equation
- State values in scientific notation and in SI format
- □ Convert between units of different quantities

HOMEWORK PROBLEMS:

1.	Express the following a) 0.00342		c notation, to two c) 0.145	o significant figures: d) 153.2	e) 674
2.		calculator, find the va b) 1 × 10 ² × 1 ×10		3 × 10 ⁶ × 2 × 10 ³	d) 10 ⁻³ × 10 ⁻⁶
	e) $\frac{10^6}{10^3}$	f) $\frac{1}{1 \times 10^3}$		g) $\frac{15 \times 10^6}{5 \times 10^{-3}}$	
3.	Express the following a) 6.34 cm	g quantities in the app b) 12 mn	•	nit in scientific notatio c) 832 km	٦.

- d) 546 nm e) 53.4 g f) 500 tonnes
- g) 123 mg h) 2.3 μ g i) 30 minutes
- j) 23 ms k) 24 hours
- 4. Express the following volumes in m³ and scientific notation in two sig figs.
 a) 7.8 cm³
 b) 34 mm³
 c) 9.8 km³
 d) 47 litres
- 5. Express the following areas in m^2 a) 1.6 cm² b) 5.3 mm² c) 0.0017 cm²
- 6. Write down the following quantities as numbers in scientific notation together with the appropriate unit without any prefix:

8. Using *1 mile* = *1.609 km*, find the number of miles in 1 km. [0.6215 mi]

9. Use the above to convert 30.0 miles/hour to km/hour. [48.3 km hr⁻¹]

10. The mileage rating of my car is 8.0 kmL⁻¹. (L = liters) How many miles per gallon is this? [19 mi gal⁻¹]

11. How many baseballs can be carried in 5 carts?
 Given: 1 cart = 12 sacks
 [500 baseballs]

 3 sacks = 1 basket
 1 basket = 25 baseballs

12. A spacecraft travels at a speed of 8/10 of a mile per second. How many days does it take it to travel from the Earth to the Moon, a distance of 240,000 miles? [3.5 days]

13. What is the weight of 6.5 gallons of water? How many cubic feet of water is this?
 Given: 1 gallon of water weighs 8.34 pounds, 1 cubic foot of water weighs 62.4 pounds
 [54.2 lbs, 0.869 ft³]

14. Perform the operation as indicated and state the answer with the correct number of significant figures. Don't forget the proper units!

- a) 16.2 m + 5.008 m + 13.48 m
- b) 78.05 cm² 32.046 cm²
- c) 15.07 kg 12.0 kg
- d) 5.006 m + 12.0077 m + 8.0084 m
- e) 27.807 mm × 4.2 mm
- f) 20.008 m 7.0 s
- g) 245 cm × 5.8 cm
- h) (5.6 × 10³ m) (2.8 × 10¹² m)
- i) 3.28 cm 12.47826 cm
- **15.** Rearrange the following formulae to make the letter in brackets the subject (solve for the letter in brackets).

$$v = u + at$$
 (u) $F = ma(a)$ $P = \frac{F}{A}(A)$ $v^2 = u^2 + 2as(a)$

$$E = mc^2$$
 (c) $P = \frac{V^2}{R}$ (V) $F = mv^2r$ (v) $E = \frac{4Mgl}{\pi ed^2}$ (d)

$$C = \frac{2F}{\rho v^2 A}$$
 (v) $F = k \rho v^2 r^2$ (r) $T = \sqrt{\frac{p}{d}}$ (d) $F = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2}$ (r)

16. As a sphere of radius r moves with a constant velocity v through a liquid of density ρ , the force F on it is given by the equation:

$$F = k\rho r^2 v^2$$
 Show that k is a dimensionless constant

17. The drag coefficient of a car C_D moving with a speed v through air of density ρ is given by

$$C_D = \frac{F}{\frac{1}{2}\rho v^2 A}$$

where F is the force, and A is the maximum cross-sectional area of the car perpendicular to the direction of travel. Show that C_D is dimensionless.

18. Check to see if the following equations are dimensionally correct:

a) $F = mv^2 r$, where F = Force, m = mass, v = velocity and r = radius.

b) $E = mv^2$, where E = energy, m = mass and v = velocity.

c)
$$c = \sqrt{\frac{p}{d}}$$
, where c = velocity, p = pressure and d = density