HW/Study Packet

SL/HL	
<u>Required:</u> READ Hamper, pp 10-14	Supplemental: READ Cutnell and Johnson, pp 9-17 Giancoli, pp 45-53 DO Tsokos pp 28-30 #2,3,5,6,12,13,14,16

REMEMBER TO

- \checkmark Work through all of the 'example problems' in the texts as you are reading them
- Refer to the IB Physics Guide for details on what you need to know about this topic
- Refer to the Study Guides for suggested exercises to do each night
- First try to do these problems using only what is provided to you from the IB Data Booklet
- Refer to the solutions/key ONLY after you have attempted the problems to the best of your ability

UNIT OUTLINE

I. DISTINGUISHING VECTORS AND SCALARS

- A. HOW TO TELL WHICH IS WHICH
- **B. REPRESENTING VECTORS**

II. VECTOR MATHEMATICS

- A. IN ONE DIMENSION
- B. IN TWO DIMENSIONS

III. VECTOR COMPONENTS AND TRIGONOMETRY

- A. BASIC RIGHT-ANGLE TRIGONOMETRY
- **B. UNIT VECTORS**
- C. THE DOT PRODUCT AND CROSS PRODUCT

IV. RESOLVING VECTORS AND FINDING RESULTANT VECTORS ANALYTICALLY

FROM THE IB DATA BOOKLET

WHAT YOU SHOULD BE ABLE TO DO AT THE END OF THIS TOPIC

- Describe the difference between, and identify, vectors and scalars
- Add and subtract vectors both graphically and analytically
- Multiply and divide vectors by scalars
- Find the components of a vectors along the horizontal and vertical axes
- □ Find components of vectors parallel and perpendicular to an inclined plane
- Construct a vectors from its given components
- Solve problems involving two or more vectors at any angles

HOMEWORK PROBLEMS:

For all problems, use a sheet of graph paper, ruler, and a protractor if necessary. Draw a **tidy vector diagram** for every problem as appropriate. **Put effort into making a neat diagram**.

1. For each vector, draw and label its x and y components:

2. For each set of component vectors, draw and label the resultant vector.

3. For each pair of vectors, draw and label the resultant vector R.

*

- 4. The components of a vector are given as s_x = 17.0 m and s_y = 8.0 m. Determine the resultant vector s graphically and analytically.
 [s = 19 m at 25°]*
- 5. The components of a vector are given as $v_x = -5.0 \text{ ms}^{-1}$ and $v_y = 20.0 \text{ ms}^{-1}$. Determine the resultant vector v graphically and analytically. [v = 21 ms⁻¹ at 76° above the -x axis]
- 6. B is a vector 15.8 units in magnitude at 34.7° above the –x axis.
 - a) Sketch this vector, choosing an appropriate scale.
 - b) Find \mathbf{B}_x and \mathbf{B}_y by measuring with a ruler.
 - c) Find \mathbf{B}_x and \mathbf{B}_y analytically.

[B_x = 13.1 units, B_y = 9 units]

- d) Use B_x and B_y from parts b) and c) to obtain (again) the magnitude and direction of B. Are they the same? Why or why not?
 [same from c, not the same from b]
- **7.** An eagle leaves his nest and flies 22.0 km north. He then flies in a direction 60.0° south of east for 47.0 km. What is the eagle's displacement from his nest?

[30.0 km 38.5° below the +x axis (321.5°)]*

8. Draw and compute the components of the vector **w** as shown, along the axes indicated, if w = 12.5 N and $\theta = 23.0^{\circ}$. [$w_x = -4.88$ N, $w_y = -11.5$ N]*

- **9.** An airplane is traveling at $\mathbf{v} = 735$ km/h in a direction 42.5° west of north.
 - a) Find the components of \mathbf{v} in the northerly and westerly directions.

 $[v_y = 542 \text{ km/h (north)}, v_x = 497 \text{ km/h (west)}]$ b) How far north and how far west has the plane traveled in 3.00 h? [1630 km N, 1490 km W]

- 10. Vector D is 7.0 cm long at 180° and vector E is 8.5 cm long at 45°.
 - a) Find the x and y components of **D** and **E**. $[D_x = -7.0 \text{ cm}, D_y = 0 \text{ cm}; E_x = 6.0 \text{ cm}, E_y = 6.0 \text{ cm}]$
 - b) Determine **D** + **E** (magnitude and direction). [6.1 cm 81° above the –x axis]
- 11. An airplane trip involves three legs, with two stopovers. The first leg is due east (90.0°) for 620 km; the second leg is southeast (315.0°) for 440 km and the third leg is 53.0° south of west, for 550 km. What is the plane's total displacement? [962 km 51.3° below the +x axis (309°)]

- 12. A mass on a string moves in a circle of radius 3.0 m with a constant speed of $v = 6.0 \text{ ms}^{-1}$. However, **v** changes constantly (why?) and is at all times tangent to the circular path as shown. The mass goes from A to B to C. Find:
 - a) $\Delta v (v_B v_A)$ between A and B [8.5 ms⁻¹ 45° below the -x axis] b) $\Delta v (v_C v_B)$ between B and C [8.5 ms⁻¹ 45° above the -x axis]

13. Three vectors are shown with magnitudes in arbitrary units. Determine the following:

14. The drawing shows the top view of two forces pulling on a box in different directions. Determine the resultant force (draw it and calculate it) and call it F. [127 N at 34.6°]

15. The drawing shows the side view of two forces pushing on a box on the

Top view

- floor. $F_1 = 5.00$ N and $F_2 = 3.00$ N. Determine the resultant force and call it F. In what direction does the box move? $[F = 4.87 \text{ N at } 74.7^{\circ} \text{ below the } -x \text{ axis; to the left}]$
- 16. The drawing shows the side view of a force pulling on a box. Describe what happens to the vertical (F_v) and horizontal (F_x) components of F as varies from 0° to 90°. [F_v increases and F_x decreases]

