1. An object has a displacement of -5 m . It moves a distance to the right equal to 15 m and then a distance of 10 m to the left.
a) What is the total distance travelled by the object?

$$
S=15 m+10 m=25 m
$$

b) What is the final displacement of the object?

From the diagram, $\vec{S}=O M$
c) What is the change in displacement of the object?

From the diagram,

$$
\Delta \vec{s}=+5 \mathrm{~m}
$$

$$
\begin{aligned}
\Delta \vec{S} & =\stackrel{\rightharpoonup}{E}_{f} \cdot \vec{S}_{i} \\
& =0--5 \hat{\imath} \text { OR } \Delta \vec{S}=+5 \mathrm{~m}
\end{aligned}
$$

2. A student walks a distance of 3.5 km from home to college. He returns home via the chip shop, covering a distance of 5.5 km . Find the total distance he was walking and his displacement from home at the end of the day.

$$
\begin{aligned}
\text { Total distance } & =3.5+5.5 \\
& =9.0 \mathrm{~km}
\end{aligned}
$$

3. Calculate the average speed in ms^{-1} of:

$$
\stackrel{\rightharpoonup}{s}=0 \mathrm{~km}
$$

a) a sprinter who completes 100.0 m in a time 10.0 s

$$
V_{A U E}=\frac{\Delta s}{\Delta t}=\frac{100.0}{10.0}=10.0 \mathrm{~ms}^{-1}
$$

b) a marathon runner who takes $2^{1} / 4$ hours to run 42.5 km .

$$
N_{A V E}=\frac{\Delta s}{\Delta t}=\frac{42.5 \times 10^{3}}{8100}=5.2 \mathrm{~ms}^{-1}
$$

$$
\frac{2.25 \mathrm{hr}}{1} \times \frac{3600 s}{1 \mathrm{hr}}=8100 \mathrm{~s}
$$

4. Starting from home, a jogger runs 4.0 km . She returns home after 20 minutes. What is:
a) her average speed?

$$
v_{\Delta v e}=\frac{\Delta s}{\Delta t}=\frac{4.0 \times 10^{3}}{1200}=3.3 \mathrm{~ms}^{-1} \quad \frac{20 \mathrm{~min}}{1} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=1200 \mathrm{~s}
$$

b) her average velocity?

$$
\begin{aligned}
& \vec{V}_{A v e}=\frac{\Delta \vec{s}}{\Delta t}=\frac{0}{1200}=0 M s^{\prime \prime} \quad \begin{array}{l}
\text { (Since } \Delta \vec{s}=0, \text { as she coded } \\
\text { where she stecited). }
\end{array}
\end{aligned}
$$

5. The speed of light is $3.00 \times 10^{8} \mathrm{~ms}^{-1}$. Calculate:
a) the distance travelled by the light in 1 complete earth year.

$$
\text { a) the distance travelled by the light in } 1 \text { complete earth year. } \begin{aligned}
v=\frac{s}{t} \Rightarrow s & =v t \\
& =\left(3.00 \times 10^{8}\right)\left(3.15 \times 10^{7}\right) \\
& =9.46 \times 10^{15} \mathrm{~m}
\end{aligned}
$$

b) The time taken, in minutes, for the light to travel from the Sun to the Earth, a distance of 150 million km.

$$
V=\frac{S}{t} \Rightarrow t=\frac{s}{V}=\frac{150 \times 10^{9}}{3.00 \times 10^{2}}=500 \mathrm{~s}=8.3 \mathrm{~min}
$$

6. A cyclist travels to work at an average speed of $3.0 \mathrm{~ms}^{-1}$ and returns home for tea at an average speed of $9.0 \mathrm{~ms}^{-1}$. Calculate her average speed for the whole journey. (The answer is not $6 \mathrm{~ms}^{-1}$)

GOiNG TO MORK: $V_{A N E}=\frac{\Delta S}{\Delta t} \Rightarrow \Delta t=\frac{\Delta S}{V_{A N E}}=\frac{1}{3} d=t_{1}$
COMiNG FROM WORK. $V_{A L E}=\frac{\Delta S}{\Delta t} \Rightarrow \Delta t=\frac{\Delta S}{V_{A L E}}=\frac{1}{9} d=t_{2}$
FOR THE
WhOLE TRIP

$$
\left.: v_{A V E}=\frac{\Delta S_{T O T}}{\Delta t_{T O T}}=\frac{2 d}{t_{1}+t_{2}}=\frac{2 d}{\left(\frac{1}{3 d}+\frac{1}{9} d\right)}=(2 d) \frac{9}{4 d}\right)=\frac{9}{2}=4.5 \mathrm{~ms}^{-1}
$$

7. The diagram shows the movement of a smoke particle in a Brownian motion experiment.
(a) Use a ruler to find (measure it properly!):
(i) the total distance moved by the smoke particle in going from A to B .

$$
\frac{23.1 \mathrm{~cm}}{1} \times \frac{0.1 \mathrm{~mm}}{1.5 \mathrm{~cm}}=1.5 \mathrm{~mm}
$$

(ii) the displacement AB.

SCALE: $1 . \mathrm{S}_{\mathrm{cm}}=0.1 \mathrm{~mm}$
(b) If it took 1.20 s to travel from A to B , calculate
(i) the average speed

$$
\begin{aligned}
V_{A V E}=\frac{\Delta s}{\Delta t} & =\frac{1.5 \mathrm{~mm}}{1.20 \mathrm{~s}} \\
& =1.3 \mathrm{~mm} \mathrm{~s}^{-1}
\end{aligned}
$$

(ii) the average velocity of the smoke particle.

$$
\begin{aligned}
\vec{v}_{\text {AVE }}=\frac{\Delta \vec{s}}{\Delta t} & =\frac{0.17 \mathrm{~mm}}{1.20 \mathrm{~s}} \\
& =\frac{0.14 \mathrm{mms}^{-1} \text { at } \theta=23^{\circ}}{(1 \text { REASUR W/RROTRACTOR) }}
\end{aligned}
$$

8. An electron enters a tube as shown at point P. How long does the electron spend inside the tube?

Assure THF ELECTION's
 VEOCITY DIES NUT CHARGE.

$$
\begin{aligned}
& \mathrm{cm} \\
& \Rightarrow \Delta t=\frac{\Delta S}{V_{A V E}}=\frac{\Delta S}{\Delta t} \\
&=\frac{12 \times 10^{-2}}{2.7 \times 10^{7}} \\
&=4.4 \times 10^{-9} \mathrm{~s}
\end{aligned}
$$

9. Sketch the shape of a tickertape chart produced from a tape attached to a trolley moving:
a) with a constant acceleration

My ruler has smallest graduation $=0.5 \mathrm{~mm}$.
10. The diagram shows the positions of a line drawn on an accelerating air track glider every 100 milliseconds. The scale of the diagram is one twentieth that of the real situation.

a) How far did the glider move between:
i) Positions 4 and 6 ?
ii) Positions 10 and 122

$$
\Delta S=(20)(1,55)=31.0 \mathrm{~cm}
$$

$$
\begin{aligned}
& \text { ii) Positions } 10 \text { and } 12276.76 .0 \mathrm{~cm} \\
& \Delta S=(20)(3.80)=7
\end{aligned}
$$

b) Write down the average velocities of the glider between these two sets of positions.

$$
v_{A V E}=\frac{\Delta S}{\Delta t}=\frac{0.310}{200 \times 10^{-3}}=1.55 \mathrm{~ms}^{-1} \quad 10.12 v_{A V E}=\frac{\Delta S}{\Delta t}=\frac{0.760}{200 \times 10^{-3}}=3.80 \mathrm{~ms}^{-1}
$$

c) How long did the glider take to accelerate from position 4 to position 10 (or from position 6 to 12)?

6 intervals, So $\Delta t=(6)\left(100 \times 10^{-3}\right)=0.600 \mathrm{~s}$ ~ Note: 3 sig fogs is of...
(Note: 4-10,6-12 both move 6 intervals...)
d) What was the acceleration of the glider?

$$
\begin{aligned}
& \text { d) What was the acceleration of the glider? } \\
& \begin{aligned}
& U S E \\
& \Delta V=V_{A V E} 10-12-V_{\text {ALE }} 4.6 \\
&=3.80-1.55=2.45 \mathrm{~ms}^{-1}
\end{aligned} \text { then } a=\frac{\Delta V}{\Delta t}=\frac{2.45}{0.600}=4.09 \mathrm{~ms}^{-2}
\end{aligned}
$$

11. An object is travelling in a circular path as shown, starting at A and going through B and C . The radius of it's path is r and it take a time t to get from A to C. It's speed is a constant $5.0 \mathrm{~ms}^{-}$ ${ }^{1}$ and initially the object is heading due north.
Determine, in terms of appropriate variables...
a) how far the object has travelled going from A to C.

HALFWAY AROUND THE
CIRCLE,...
b) the displacement from A to C .

DIAMETER OF THE CIRCLE,
TO THE RIGHT... $\bar{S}=2 r m$ EAST
c) the time taken to get from A to B.

$$
t_{A B}=\frac{1}{2} t
$$

d) the change in velocity from A to B.

$$
\stackrel{\rightharpoonup}{\Delta V}=\vec{V}_{B}-\overrightarrow{V_{A}}=\vec{V}_{B}+\vec{V}_{A} \Rightarrow \Delta V=\left(V_{E}^{2}+V_{A}^{2}\right)^{\frac{1}{2}}=7.1 \mathrm{~ms}^{-1} \mathrm{SE}
$$

e) the change in velocity from B to C.

$$
\Delta V=\vec{V}_{C}-\vec{V}_{B}=V_{C}+-V_{B} \Rightarrow \Delta V=\left(\tilde{V}_{B}^{2}+V_{C}^{2}\right)^{\frac{1}{2}}=7.1 \mathrm{Ms}^{-1} \mathrm{SW}
$$

f) the change in velocity from A to C.

$$
\Delta V=\vec{V}_{C}-\vec{V}_{A}=\vec{V}_{C}+-\vec{V}_{A}=-5 \hat{\jmath}+-5 \hat{\jmath}=10 . \mathrm{ms}^{-1} \mathrm{~S}
$$

g) the average acceleration between A and B.

$$
\vec{a}_{\text {AVE }}=\frac{\Delta \vec{v}}{\Delta t}=\frac{7.1}{t_{2}}=\frac{14}{t} \mathrm{~ms}^{-2} \mathrm{sE}
$$

h) the average acceleration between A and C.

$$
\vec{a}_{A V E}=\frac{\Delta \vec{v}}{\Delta t}=\frac{10}{t} \Rightarrow \frac{10}{t} \mathrm{~ms}^{-2} \mathrm{~s}
$$

i) Determine the direction of the forces) acting on the object (if any) at points A, B, and C. From Newton's 2 nd law ($\vec{F}=m \vec{a}$), the fores acting on the clject is in the same direction as acceleration, and velocity.
\therefore At A, B, and $C \vec{F}$ is acting towed the cote of the cere.
12. Calculate the acceleration of an airplane if it accelerates from $15.0 \mathrm{~ms}^{-1}$ to $80.0 \mathrm{~ms}^{-1}$ in 1 minute.

$$
a=\frac{\Delta V}{\Delta t}=\frac{V-U}{t}=\frac{80.0-15.0}{60}=1.08 \mathrm{~ms}^{-2}
$$

13. Calculate the time taken for a car to increase its speed from $5.0{\mathrm{~ms}-1 \text { to } 25 \mathrm{~ms}^{-1} \text { if its acceleration is }-~}_{\text {- }}$ $2.0 \mathrm{~ms}^{-2}$.

$$
v=u+a t \Rightarrow t=\frac{v-u}{a}=\frac{25-5.0}{2.0}=10.5
$$

14. A car accelerates away from traffic lights with an acceleration of $5.0 \mathrm{~ms}^{-2}$ for 6.0 seconds. It then brakes with an acceleration of $-3.0 \mathrm{~ms}^{-2}$ for 2.0 seconds. What was its final speed?
PART 1: $v=u+a t=0+(5.0)(6.0)=30 \cdot \mathrm{~ms}^{-1}=u$ FOR PART 2
PART 2: $v=u+a t=30+(-3.0)(2.0)=24 \mathrm{~ms}$
15. A small steel ball of mass M is dropped from rest into a long vertical tube that contains oil. The sketch graph shows how the speed v of the ball varies with time t.

a) Explain how you would use the graph to find the average speed of the ball between $t=0$ and $t=t 1$.
You could find the total distance covered by the ball by finding the caa (estimating) under the graph, then dividing this by t_{1}, since $v_{\text {AVE }}=\frac{\text { TOTAL DISANCE }}{\text { TOLA L TIME }}$.
b) The gradient of the graph at $t=t_{1}$ is k. Deduce an expression in terms of k, A and g, the acceleration of free fall, for the magnitude of the frictional force F acting on the ball at $t=t_{1}$.
gradient =acceleration $=K$

$$
\begin{array}{ll}
\text { gradient =acceleration }=k & \Sigma F=m a=m k=m g-F \\
\prod_{M g=\vec{W}} \quad \text { at } t_{1}, F<w & \therefore F=m g-m k=m(g-k)
\end{array}
$$

c) State and explain the magnitude of the frictional force acting on the ball at $t=t_{2}$.

At $t=t_{2}, F=\omega=M g$; so $F=\frac{m g}{\omega}$ the frictional force is at a maximum, equal to the weight of the ball, and the ball is at it's terminal velocity v_{t}.
16. A ball of mass 0.25 kg is projected vertically upwards from the ground with an initial velocity of $30 \mathrm{~m} \mathrm{~s}^{-1}$. The acceleration of free fall is $10 \mathrm{~m} \mathrm{~s}^{-2}$, but air resistance cannot be neglected. The graph shows the variation with time t of the velocity v of this ball for the upward part of the motion.

Determine, for the ball at $t=1.0$ s , the acceleration and the magnitude of the force of air resistance.

Motion of ball
is

$$
\begin{aligned}
\Sigma \stackrel{\rightharpoonup}{F}=m \stackrel{\rightharpoonup}{a} \Rightarrow \quad m a & =m g+F_{d} \\
F_{d}=m(a-g) & =(0.25)(-14.3-9.81) \\
& =-1.1 \mathrm{~N} \\
\therefore F_{d} & =1.1 \mathrm{~N}
\end{aligned}
$$

17. The v-t graph shown is for the vertical motion of a person who jumps from a helicopter and a few seconds later opens a parachute.
a) When does the parachute open? Mark this point on the graph and explain your answer.
at t_{1} indicted on the graph. at the instant before the parachute opens, the person is at their maximum speed. But the person did not achieve terminal velocity before deploying the parachute.
b) When does the force of air resistance reach a maximum? Mark this point on the graph and explain your answer.
Since $F \propto N$, FF ${ }_{\text {max }}$ corresponds to the time that $v_{\text {max }}$ was reached, so again at t_{1}.
c) Is the air resistance force constant? Explain.

NO! Because $F \propto N, F$ varies constantly in this situation.
18. This problem is about cars driving along a straight road.
a) Complete the table showing the speeds of a car at 1 second intervals from starting out, if the acceleration of the car was $5.0 \mathrm{~ms}^{-2}$. and -sketch a graph of speed vs. time for the ear.

Time /s	0.0	1.0	2.0	3.0	4.0	5.0	6.0
Speed / $\mathbf{m s}^{-1}$	0.0	5.0	10.	15	20.	25	30.

b) Repeat for an acceleration of $8.0 \mathrm{~ms}^{-2}$.

Time /s	0.0	1.0	2.0	3.0	5.0	6.0
Speed $/ \mathrm{ms}^{-1}$	0.0	8.0	16	24	40.	48

c) Sketch a graph of data from both tables on the graph. Clearly label the graphs ' a ' and ' b '.

d) Deduce, using data from your graph, that the car in part (b) travelled further than the car in part (a) after 6.0 s .

FOR A vet GRAPH, IIETANEE DRAVELLED = AREA EETMEEN GIAHDH
AND x-Axis. IN 6 SECONDS:
$\operatorname{CAR}(a)$ TRaVELED $S_{a}=\frac{1}{2}(30 \times 6)=90 \mathrm{~m}$
CAR (b) MAVELLE) $s_{n}=\frac{1}{2}(48 \times 6)=144 \mathrm{~m}$

Hl 19. Use the distance-time graph to find:

a) how far the body has moved after 10 s

$$
13 \mathrm{~m}
$$

b) how long the body takes to travel 8 m

$$
\text { ABOut } 6.5 \mathrm{~s}
$$

c) the average speed of the body after 15 s

$$
V_{A V E}=S \angle O P E=\frac{\Delta S}{\Delta T}=\frac{20 \mathrm{~m}}{15 \mathrm{~S}}=1.3 \mathrm{~ms}^{-1}
$$

d) the instantaneous speed when $t=5 \mathrm{~s}$

$$
\text { AT EVERY INSANT, } V=V_{A V E}=1.3 \mathrm{~ms}^{-1}
$$

e) the equation of the line

$$
\begin{aligned}
& y=m x+c \\
& s=1.3 t+0
\end{aligned}
$$

c 20. Use the velocity-time graph to find:
a) the acceleration during the first 5 s

$$
a=\underset{\text { SURE }}{\text { SUSE }}=\frac{\Delta V}{\Delta t}=\frac{12}{5}=2.4 \mathrm{~ms}^{2}
$$

b) the distance travelled during this acceleration

$$
S=A R=A \text { REWVEEN GRAPH }=\frac{1}{2}(12 \times 5)=30 \mathrm{~m}
$$

c) the total distance covered between 'stops'

$$
\Delta s=\Delta v \Delta t=(12)(s)=60 \mathrm{~m}
$$

d) the average speed during the 22 s journey.

$$
v_{A V E}=\frac{\Delta S}{\Delta t}=\frac{162 \mathrm{~m}}{22 \mathrm{~s}}=7.4 \mathrm{~ms}^{-1}
$$

TOLA DISTANCE $=162 \mathrm{~m}$
e) the equation of the graph IT IS A"PIECE-WISE

$$
\begin{array}{ll}
\text { FOR } & 0 \leq t<5: \\
\text { FOR } & 5 \leq t<10: \\
\text { FOR } & 10 \leq t<22: \\
\hline
\end{array}
$$

DEFINED
FUNCTION"

$$
\begin{aligned}
& \text { u: ADT I; } \begin{aligned}
\operatorname{slog} 2 & =\frac{\Delta V}{\Delta t} \\
& =\frac{-12}{12}=-1.0
\end{aligned} \\
& \begin{aligned}
& v=-t+c \\
& 12=-10+c \Rightarrow c
\end{aligned}=22 \text { (one way to } \\
& \text { ind } y-\text { int.) }
\end{aligned}
$$

21. Sketch the acceleration-time graph corresponding to the velocity-time graph in question 17.

Note: vertical pacts at $t=5,10$

HI 22. The graph shows the result of studying a sprint start.
a) What, in m.p.h., was the maximum velocity reached? (take $1.0 \mathrm{~ms}^{-1}$ to equal 2.24

$$
\begin{aligned}
& \text { m.p.h.) } \\
& V_{M A X}=9.5 \mathrm{~ms}^{-1}=21.3 \mathrm{mihr}^{-1} .
\end{aligned}
$$

Note: instanterreous slopes (of tannout straight lines) decrease as time passes. So acceleration

b) Calculate the acceleration of the sprinter in $\mathrm{ms}^{-2^{\prime}} \ldots$
i) as she leaves her blocks.

$$
\begin{aligned}
a & =\begin{array}{l}
\text { SLIDE OF } \\
\text { UNE }(i) \\
\\
\end{array}=\frac{\Delta v}{\Delta t}=\frac{10}{1.2}=\frac{8.3 \mathrm{~ms}^{-2}}{\text { (approximately) }}
\end{aligned}
$$

ii) after 2.0 s .

$$
\begin{aligned}
a & =\text { SLDPEOF } \\
& \text { UNE (ii) } \\
& =\frac{\Delta V}{\Delta t}=\frac{10-7.5}{2.8-0.7} \\
& =\frac{2.5}{2.1}=\frac{1.2 \mathrm{~ms}^{-2}}{(a p p r o x}
\end{aligned}
$$

23. The graph describes the motion of a train moving in a speed- restricted area and then accelerating as it clears the area. You are to calculate the total distance travelled by the train in the 40 s shown in two different ways.

a) Use the average velocity of the train during each 20 s interval to calculate two separate distances and add them together.

$$
\begin{aligned}
\text { PART (I): } V_{\Delta V E}=+10 \mathrm{~ms}^{-1}=\frac{\Delta S_{1}}{\Delta t_{1}} \Rightarrow & \Delta S_{1}=V_{\Delta V E}, \Delta t_{1}=(+10)(20)=200 \mathrm{~m} . \\
\text { PART (III): } V_{A V E}=+20 \mathrm{~ms}^{-1}=\frac{\Delta S_{2}}{\Delta t_{2}} \Rightarrow & \Delta S_{2}=V_{\Delta V E}=\Delta t_{2}=(+20)(20)=400 \mathrm{~m} \\
& \text { THEN } \Delta S_{\text {TU }}=\Delta S_{1}+\Delta S_{2}=200+400 \pm 600 \mathrm{~m}
\end{aligned}
$$

b) Find the number of squares under the graph and the distance represented by one square.

$$
\begin{aligned}
A R E A(I) & =10 \times 20=200 \mathrm{~m} \\
A R E A(I I) & =(10 \times 20)+\frac{1}{2}(20 \times 20)=400 \mathrm{~m} \\
\text { TOTACAR=A } & =A R E A(1)+A R E A \text { III } \\
& =200+400 \\
& =600 \mathrm{~m}
\end{aligned}
$$

25. At $t=0$ a car is stopped at a traffic light. When the light turns green, the car starts to speed up. It gains speed at a constant rate until it reaches a speed of $20 \mathrm{~ms}^{-1}$ eight seconds after the light turns green. The car continues at a constant speed for 40 m . Then the driver sees a red light up ahead at the next intersection and starts slowing down at a constant rate. The car stops at the red light, 180 m from where it was at $\mathrm{t}=0$. Draw accurate $\mathrm{a}-\mathrm{t}, \mathrm{v}-\mathrm{t}$, and $\mathrm{s}-\mathrm{t}$ graphs for the motion of the car

entire trip these 42.5 s .
HL
26. The graph below shows the variation with time t of the displacement s of a car. In which time interval is the speed greatest? Explain.
THE SECTION WITH THE STEEPEN SLOPE (t OR - SLOPE DOESNT MATEER); SECTION (A).

WW
27. This displacement-time graph is for the motion of a glider between two elastic buffers on an air track.
a) From what point on the track is the displacement being measured?

Themid-pint between the BurgErs.
b) Sketch two more graphs, using the same time scale, showing how the velocity and acceleration of the glider vary with time.

whats the simplifying assumption we are making here?
28. This displacement-time graph is for the motion of a swinging pendulum.
a) From what point is the displacement being measured?

The middle (vertical) position

b) Sketch two more graphs, using the same time scale, showing how the velocity and acceleration of the pendulum vary with time.

$$
\frac{d}{d t} s(t) \quad \begin{aligned}
& \text { (Inst } \\
& \text { Derivative! }
\end{aligned}
$$

$$
\frac{d^{2}}{d t^{2}} S(t)=\frac{d}{d t} v(t)
$$

Note: NO SCAESON GRAMS: GENELA. SHANES ARE ALL he cade ABBUT...
29. Joseph runs along a long straight track, starting from rest at $t=0 \mathrm{~s}$. The variation of his speed v with time t is shown. At $t=25 \mathrm{~s}$, determine:
a) how far he has run

$$
\begin{aligned}
\text { a) how far he has run } \\
\begin{array}{rl}
A R=A ~ R E T U E E N ~ G R A R H & A R=A \\
A H D X-A \times N \mathrm{~S} & =A R=A \\
& =\frac{1}{2}(10 \times 10)+(10 \times 15)=\frac{200 \mathrm{M}}{\mathrm{v} / \mathrm{ms}^{-1}}
\end{array}
\end{aligned}
$$

b) his instantaneous speed

$$
\text { RZAD THE ORADH: at } t=25, r=10 \mathrm{~ms}
$$

c) his average speed since he started

$$
V_{A V E}=\frac{\Delta S}{\Delta t}=\frac{200}{25}=8 \mathrm{Ms}^{-1}
$$

$$
\begin{aligned}
& \text { d) his instantaneous acceleration } \\
& \text { AT } t=25 \mathrm{~s}, \text { SLOPE OF } v-t=0 . \quad s_{0} a=0 \mathrm{~ms}^{-2}
\end{aligned}
$$

e) his average acceleration since he started

SLOPE OF LINE DRAWN:

$$
a_{\text {AVE }}=\frac{\Delta v}{\Delta t}=\frac{10}{25}=0.4 \mathrm{~ms}^{-2}
$$

How 30. The graph shows the variation with time t of the velocity v of an object moving along a straight line. For the time interval $0 \leq t \leq 6 s$ determine:
a) the displacement of the object.

$$
\begin{aligned}
\vec{S}=\vec{S}_{0}+\vec{S}_{1}+\vec{S}_{2} & =A R E A+A R E A \text { (II) } \\
& =\frac{1}{2}(8 \times 4)+-\frac{1}{2}(4 \times 2) \\
& =16+-4=+12 \mathrm{~m}
\end{aligned}
$$

b) the average speed of the object.

$$
V_{A V E}=\frac{\Delta S}{\Delta t}=\frac{20}{6}=3.3 \mathrm{~ms}^{-1}
$$

c) the average velocity of the object.

$$
\begin{aligned}
& \text { c) the average velocity of the object. } \\
& \vec{V}_{A V E}=\frac{\Delta \stackrel{\rightharpoonup}{s}}{\Delta t}=\frac{\stackrel{S}{s}-\vec{S}_{\Delta}}{t-t_{0}}=\frac{+12-0}{6}=+2 \mathrm{~ms}^{-1}
\end{aligned}
$$

* Visually verify titi... How?
d) the acceleration of the object.

$$
\vec{S}_{1}=+16 \mathrm{~m} .
$$

$$
\vec{S}_{2}=-4 m
$$

$$
\vec{s}=\vec{S}_{0}+\vec{S}_{1}+\vec{S}_{2}
$$

$$
\begin{aligned}
a & =\text { SLEPE } \triangle F N-t \text { gRAM } \\
& =\frac{\Delta v}{\Delta t}=\frac{-12}{6}=2 \mathrm{~ms}^{-2}
\end{aligned}
$$

taking the extine Δ shawn...
31. A 0.50 kg cart is moving along a horizontal track. The graph of velocity v_{x} against time t for the cart is given:
a) Indicate every time t for which the cart is at rest.

$$
v_{x}=0 \mathrm{~ms}^{-1} \text { at } t=4 \leqslant 18 \mathrm{~s}
$$

b) Indicate every time interval for which the speed (the magnitude of the velocity) of the cart is increasing.
$\Delta t=4-9 \mathrm{~s}, 18-20 \mathrm{~s}$
c) Determine the horizontal position x of the cart at $t=9.0 \mathrm{~s}$ if the cart is located at $x=2.0 \mathrm{~m}$ at $t=0$.
$+\vec{S}(0-4 s): A R E A=\frac{1}{2}(4 \times 0.8)=T 1.6 \mathrm{~m}=\overrightarrow{s_{1}}$
$-\vec{s}(4.9 \mathrm{~s}): A R E A=\frac{1}{2}(5 \times 1.0)=-2.5 \mathrm{~m}=\vec{s}_{2}$
SO, FiNAL DISPlacement is $\vec{S}_{0}+\vec{S}_{1}+\vec{S}_{2}=+2.0+1.6+-2.5=+1.1 \mathrm{~m}$
d) Find the maximum acceleration of the cart and determine the times) at which this occurs.

Cl max CORLESPONS TO STEEPESTHRT OF THE N-t GRAAM.
THis is DuRing. $\Delta t=17-20 \mathrm{~s}$ AND 1 s .

$$
\frac{\Delta y}{\Delta x}=\frac{0.0-0.4}{3}=+0.4 \mathrm{~ms}^{-2}
$$

32. The graph shows the variation with time t of the velocity v of an object moving along a straight line. On the same graph, sketch the variation of time t of the acceleration a.

NOTE: $\quad a=$ SLOVE OF vat GRAPH.
EVEXLWHER $=$ ON THIS GLAOHH
THE SLOPE IS EITHER ZERO LAT THE: ENDS) CR NGGrतive, what Maximum NEGATIVE STONES AT t_{1}

33. A projectile is fired vertically upwards and reaches a height of 78.4 m . Find the velocity of the

$$
\begin{aligned}
& \text { - projection and the time it takes to reach its highest point. } \\
& \begin{aligned}
v^{2}=u^{2}+2 a s \Rightarrow u & =\left(v^{2}-2 a s\right)^{\frac{1}{2}} \\
& =0
\end{aligned} \\
& \begin{array}{l}
\text { then, } 0 \\
s=\left(\frac{1}{2}+u\right) t \Rightarrow t=\frac{2 s}{2}=\frac{2(78.4)}{39.2}=4.00 \mathrm{~s} \quad \frac{3(-9.81)(78.4)}{}=\frac{3 \mathrm{~ms}}{\text { (upholds) }}
\end{array}
\end{aligned}
$$

34. A stone dropped from rest down a well takes 1.9 s to hit the surface of the water. Calculate the depth of the well.

s	u	v	a	t
$?$	0		-9.81	1.9

$$
\begin{align*}
S & =u t+\frac{1}{2} a t^{2} \\
& =\frac{1}{2}(-9.81)(1.9)^{2}=-18 \mathrm{~m} \tag{downward}
\end{align*}
$$

35. A stone is thrown vertically upwards with an initial velocity of $29.4 \mathrm{~ms}^{-1}$ from the top of a tower 34.3 m high. Find:
a) the time taken to reach the maximum height.

s	u	v	a	t
+34.3	+29.4	0	-9.81	$?$

$$
\begin{aligned}
& v=u+a t \\
& \Rightarrow t=\frac{v-u}{a}=\frac{0-29.4}{-9.81}=3.00 \mathrm{~s}=t_{1}
\end{aligned}
$$

b) the total time which elapses before it reaches the ground.

TIME TO GET BACK DOWN TO WHERE IT WAS THROWN $=3.00 \mathrm{~s}=t_{2}$
NOW, TIME TO GET AU THE WAY TO THE BOTTOM $=t_{3}$.

s	u	v	a	t
-34.3	-29.4	-	-9.81	$?$

$$
\begin{aligned}
s & =u t+\frac{1}{2} a t^{2} \\
t & =0 \text { OR } 4,00 \\
& =t_{3}
\end{aligned}
$$

So, total time:

$$
\begin{aligned}
t_{1}+t_{2}+t_{3} & =3.00+3,00+4,00 \\
& =10.05
\end{aligned}
$$

36. A small iron ball is dropped from the top of a vertical cliff and takes 2.5 s to reach the sandy beach below. Find:
a) the velocity with which it strikes the sand.

s	u	v	a	t
-	0	$?$	-9.81	2.5

$$
\begin{aligned}
v & =u+a t \\
& =(-9.81)(2.5)=-25 \mathrm{~ms}^{-1}
\end{aligned}
$$

b) the height of the cliff.

$$
\begin{align*}
S & =4 t^{2}+\frac{1}{2} a t^{2} \\
& =\frac{1}{2}(-9.81)(2.5)^{2} \\
& =-31 \mathrm{~m}
\end{align*}
$$

$$
\begin{aligned}
S & =\left(\frac{v+u}{2}\right) t \\
& =\left(\frac{-25}{2}\right)(2.5) \\
& =-31 \mathrm{~m}
\end{aligned}
$$

(a)

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \Rightarrow \\
S & =\frac{v^{2}-u^{2}}{2 a} \quad \text { APPLE!! } \\
& =\frac{25^{2}-0^{2}}{2(-9.81)}=-32 \mathrm{~m}
\end{aligned}
$$

37. A particle starts from rest and moves in a straight line with a constant acceleration until it reaches a velocity of $15 \mathrm{~ms}^{-1}$. It is then brought to rest again by a constant retardation of $3^{\prime \prime} \mathrm{ms}^{-2}$. If the particle is then $60, \mathrm{~m}$ from its starting point, find the time for which the particle is moving.
2 Part Problem:
(1)

s^{s}	u	v	a	t
s_{1}	0	+15	-	t_{1}

(2)

s	u	v	a	t
s_{2}	15	0	-3.0	t_{2}

$$
S_{1}=\left(\frac{(1+v}{2}\right) t_{1}=\frac{15}{2} t_{1}=7.5 t_{1}
$$

$$
v^{2}=u^{2}+2 a s
$$

Now, $s_{1}+s_{2}=60.0 \mathrm{~m}=7.5 t_{1}+35.0$
so $t_{1}=3.0 \mathrm{~s}$ (and $s_{1}=22.5 \mathrm{~m}$)
AND $t_{2}=5.0 \mathrm{~s}$
$\therefore t=t_{1}+t_{2}=8.0 \mathrm{~s}$
38. A car brakes with a deceleration of $2.5 \mathrm{~ms}^{-2}$ (an acceleration of $-2.5 \mathrm{~ms}^{-2}$) Calculate the distance it needs to stop, if its initial speed is
a) $20 . \mathrm{ms}^{-1}$

s	u	v	a	t
$?$	+20	0	-2.5	-

$$
\begin{aligned}
& v^{2}=u^{2}+2 a s \\
& s=\frac{v^{2}-u^{2}}{2 a}=\frac{0^{2}-20^{2}}{2(-2.5)} \\
&=80 M
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \left.\begin{array}{c}
40^{\circ} \mathrm{ms}^{-1} \\
s \\
s
\end{array} \right\rvert\, u \\
& \hline ? \\
& \hline+40 \\
& s=\frac{v^{2}-u^{2}}{2 a}
\end{aligned}=\frac{0^{2}-40^{2}}{2(-2.5)}
$$

39. An antelope moving with constant acceleration covers the distance between two points 80.0 m apart in 7.00 s . Its speed as it passes the second point is $15.0 \mathrm{~ms}^{-1}$.
a) What is its speed at the first point?

s	u	v	a	t
+80.0	$?$	+15.0		7.00
(7.86)				

$$
\begin{aligned}
s=\left(\frac{u+v}{2}\right) t \Rightarrow u & =\frac{2 s}{t}-v \\
& =\frac{2(80.0)}{7.00}-15.0 \\
& =7.86 \mathrm{~ms}^{-1}
\end{aligned}
$$

b) What is its acceleration?

$$
\begin{aligned}
v=u+a t \Rightarrow a=\frac{v-u}{t} & =\frac{+15.0-7.86}{7.00} \\
& =1.02 \mathrm{~ms}^{-1}
\end{aligned}
$$

40. One type of airplane has a maximum acceleration on the ground of $3.5 \mathrm{~ms}^{-2}$.
a) For how many seconds must it accelerate along a runway in order to reach its take off speed of $115 \mathrm{~ms}^{-1}$?

s	u	v	a	t
	0	+115	+3.5	$?$

$$
\begin{aligned}
& v=u+a t \\
& \Rightarrow t=\frac{v-u}{a}=\frac{+115}{+3.5}=33 s
\end{aligned}
$$

b) What is the minimum length of runway needed to reach this speed?

$$
\begin{align*}
S & =4 t^{2}+\frac{1}{2 a} a t^{2} \\
& =\frac{1}{2}(3.5)(33)^{2}
\end{align*}
$$

$$
\begin{aligned}
S & =\left(\frac{v+u}{2}\right) t \\
& =\left(\frac{115}{2}\right)(33) \\
& =1900 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \\
\Rightarrow s & =\frac{v^{2}-u^{2}}{2 a} \\
& =\frac{115^{2}}{2(3.5)}=1900 \mathrm{~m}
\end{aligned}
$$

41. An airplane travels 420 m down the runway before taking off. It starts from rest, moves with constant acceleration, and becomes airborne in 16.0 s . What is its speed, in ms^{-1}, when it takes off?

S	u	v	a	t
+420	0	$?$	-	16.0

$$
S=\left(\frac{v+c}{2}\right) t \Rightarrow v=\frac{2 s}{t}-u=\frac{2(420)}{16.0}=53 \mathrm{~ms}^{-1}
$$

42. A bullet travelling at a speed of $110 \mathrm{~ms}^{-1}$ penetrates a tree trunk to a depth of 65 mm . Calculate
a) the impact time of the bullet

$$
\begin{array}{c|c|c|c}
s & u & v & a \\
t & t
\end{array} \begin{aligned}
& s=\left(\frac{v+u}{2}\right) t \\
& \left.+65 \times 10^{-3}\right)+110 \\
& \hline
\end{aligned}
$$

b) the deceleration of the bullet.

$$
\begin{align*}
& v=u+a t \\
& v^{2}=u^{2}+2 a s \\
& S=u t+\frac{1}{2} a t^{2} \\
& \Rightarrow a=\frac{v-u}{t} \\
& =\frac{-110}{1.2 \times 10^{-3}} \\
& a=-9.2 \times 10^{4} \mathrm{~ms}^{-2} \\
& \text { (on) } \Rightarrow a=\frac{2}{t^{2}}(s-u t) \\
& =\frac{\frac{2}{t^{2}}}{\left(1.2 \times 10^{-3}\right)^{2}}\left(65 \times 10^{-3}-110\left(1.2 \times 10^{-3}\right)\right) \\
& \begin{array}{l}
=\frac{-(110)^{2}}{2\left(65 \times 10^{-3}\right)} \\
=-9.3 \times 10^{4} \mathrm{Ms}^{-2}
\end{array} \\
& \Rightarrow a=\frac{v^{2}-u^{2}}{2 s} \\
& =-9.3 \times 10^{4} \mathrm{~ms}^{-2}
\end{align*}
$$

43. Electrons in a particle accelerator are moving at $8.0 \times 10^{5} \mathrm{~ms}^{-1}$ when they enter a tube where they are accelerated to $6.5 \times 10^{6} \mathrm{~ms}^{-1}$ in $3.0 \times 10^{-7} \mathrm{~s}$.
a) What is their acceleration in the tube?

s	u	v	a	t
$?$	$+8.0 \times 10^{5}+6.5 \times 10^{6}$	$?$	3.0×10^{-7}	

$$
\begin{aligned}
& v=u+a t \\
& \Rightarrow a=\frac{v-u}{t}=\frac{6.5 \times 10^{6}-8.0 \times 10^{5}}{3.0 \times 10^{-7}} \\
&=+1.9 \times 10^{13} \mathrm{~ms}^{-2}
\end{aligned}
$$

b) What is the length of the tube?

$$
\begin{aligned}
S & =u t+\frac{1}{2} a t^{2} \\
& =\left(8.0 \times 10^{5}\right)\left(3.0 \times 10^{-7}\right)+\frac{1}{2}\left(1.9 \times 10^{13}\right)\left(3.0 \times 10^{-7}\right)^{2} \\
S & =1.1 \mathrm{~m}
\end{aligned}
$$

018

$$
\begin{aligned}
S & =\left(\frac{v+u}{2}\right) t= \\
& =\frac{6.5 \times 10^{6}+8.0 \times 10^{5}}{2}\left(3.0 \times 10^{-7}\right)
\end{aligned}
$$

(OR) $v^{2}=u^{2}+2 a s \Rightarrow S=\frac{v^{2}-u^{2}}{2 a}=1.1 m$
44. An electron moving at a speed of $1.30 \times 10^{5} \mathrm{~ms}^{-1}$ travels 20.0 cm through an electric field. It leaves in the same direction with a speed of $9.30 \times 10^{5} \mathrm{~ms}^{-1}$. Find:
a) The acceleration of the electron while it is in the electric field.

s	U	v	a	t
+0.200	$+1.30 \times 10^{5}$	$+9.30 \times 10^{5}$	$?$	

$$
\left(2.12 \times 10^{12}\right)^{1}
$$

$$
\begin{aligned}
& v^{2}=u^{2}+2 a s \\
& \Rightarrow a=\frac{v^{2}-u^{2}}{2 s}=\frac{\left(9.39 \times 10^{5}\right)^{2}-\left(1.30 \times 10^{5}\right)^{2}}{2(0.200)} \\
&=2.12 \times 10^{12} \mathrm{~ms}^{-2}
\end{aligned}
$$

b) The time it spends in the electric field.
45. The human body can survive a negative acceleration trauma incident (sudden stop) if the magnitude of the acceleration is less than $250 \mathrm{~ms}^{-2}$ (approximately 25 g). If you are in an automobile accident with an initial speed of $88 \mathrm{~km} / \mathrm{h}$ and are stopped by an airbag that inflates from the dashboard, over what distance must the airbag stop you if you are to survive the crash?

| s | u | v | a | t |
| :--- | :---: | :---: | :---: | :---: |\quad| 88 knk |
| :--- | :--- |$\frac{1000 \mathrm{H}}{1 \mathrm{hr}} \times \frac{1 \mathrm{hr}}{11 \mathrm{~cm}} 3600 \mathrm{~s}=24.4 \mathrm{~ms}^{-1}$.

$$
v^{2}=u^{2}+2 a s \Rightarrow s=\frac{v^{2}-u^{2}}{2 a}=\frac{0^{2}-24.4^{2}}{2(-250)}=+1.2 \mathrm{~m}
$$

$$
\begin{aligned}
& v=u+a t \\
& \Rightarrow t=\frac{v-u}{a} \\
& =\left(9.30 \times 10^{5}\right)-\left(1.30 \times 10^{5}\right) \quad \rightarrow t=\frac{2 s}{4+v} \\
& =2(0.200) \\
& \frac{2(0.200)}{\left.1.30 \times 10^{5}\right)+\left(9.30 \times 10^{5}\right)} \\
& =3.77 \times 10^{-7} \mathrm{~s} \\
& s=u t+\frac{1}{2} a t^{2} \\
& \text { Solve the quadratic... } \\
& \text { ore of the assures will } b_{c} \\
& \frac{t=3.77 \times 10^{-7} s!}{(I)}
\end{aligned}
$$

46. A car driver, travelling in his car at a steady speed of $8.0 \mathrm{~ms}^{-1}$, sees a dog walking across the road 30.0 m ahead. The driver's reaction time is 0.20 s , and the brakes of producing a deceleration of 1.2 $\mathbf{m s}^{2}$. Calculate the distance from where the car stops to where the dog is crossing.

S	u	v	a	t
+30.0	+8.0	0	-1.2	

IN 0.20s, THE CAR TRAVELS:

$$
\begin{aligned}
v=\frac{\Delta s}{\Delta t} \Rightarrow \Delta s=v \Delta t & =(8.0)(0.20) \\
& =1,6 \mathrm{~m} .
\end{aligned}
$$

$$
\begin{aligned}
& v^{2}=u^{2}+2 a s \\
\Rightarrow & s=\frac{v^{2}+u^{2}}{2 a}=\frac{0^{2}-8.0^{2}}{2(-1.2)}=26.7 \mathrm{~m}
\end{aligned}
$$

Now, $26.7 \mathrm{~m}+1.6 \mathrm{~m}=28.3 \mathrm{~m}$ WHicH is 1.7 m FROM THE DOG.
47. Consider a speeding motorist travelling at $140 \mathrm{~km} / \mathrm{hr}$ along a highway. A police car travelling at 180 $\mathrm{km} / \mathrm{hr}$ is chasing him but is 10.0 km behind the motorist. How long does it take the police car to catch up to the speeding motorist?
(∞
 10 km

THINK OF it as the police car approaching
THE Motorist at $v=40 \mathrm{kmh}^{-1}$.
then $v=\frac{\Delta S}{\Delta t} \Rightarrow \Delta t=\frac{\Delta S}{v}=\frac{10 \mathrm{~km}}{40 \mathrm{~km} \mathrm{kr}}$

$$
=.25 \mathrm{hr}
$$

$$
-15 \mathrm{~min}
$$

48. A ball is kicked horizontally off a 15.0 m cliff at a velocity of $12.0 \mathrm{~m} / \mathrm{s}$ as shown. Find:
a) the time of flight of the ball.
[1.75 s]

b) the range of the ball.
[20.1 m]

$$
\begin{aligned}
& V_{x}=v_{0}=\text { constant }=12.0 \mathrm{~ms}^{-1} \\
& v_{x}=\frac{\Delta s}{\Delta t} \Rightarrow \Delta s=v_{x} \Delta t=(12.0)(1.75)=20.1 \mathrm{~m}
\end{aligned}
$$

c) the velocity of the ball at impact.

$$
=(2(9.8)(15.0))^{1 / 2}
$$

49. The same ball in the previous exercise is now initially kicked at an angle of 30.0° above the horizontal. Find:
a) the time of flight of the ball.

TIME UP $=S=\left(\frac{u+v}{2}\right) t \Rightarrow t=\frac{2 s}{[2.46 \mathrm{~s}]}=\frac{2(1.84)}{600}=0.613$
TIME DOWN: $t=\sqrt{\frac{2 S}{9}}=\left(\frac{2(16.8)}{9.81}\right)^{1 / 2}=\frac{1.855}{200}$
\therefore TOTAL TIME $=1.85+0.613=2.465$
b) the range of the ball.

$$
\begin{aligned}
v_{x}=\frac{s}{t} \Rightarrow S & =v_{x} t \\
& =(10.4)(2.46)=25.6 \mathrm{~m}
\end{aligned}
$$

c) the velocity at impact.

$$
\begin{aligned}
v_{x} & =v_{0 x}
\end{aligned}=10.4 \mathrm{~ms}^{-1} 0 . ~ \begin{aligned}
v_{y}^{2} & =U_{y}^{2}+2 a s \Rightarrow \\
v_{y}=\sqrt{29 s} & =(2(9.81)(16.8))^{1 / 2} \\
& =18.155 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& v_{x}=12.0 \mathrm{~ms}^{-1} \\
& v_{y}^{2}=u_{0} u^{2}+2 g s \Rightarrow v_{y}=\sqrt{2 g s} \\
& =17.15 \mathrm{~ms}^{-1} \text {. } \\
& \therefore \quad V=\left(V_{x}^{2}+V_{y}^{2}\right)^{1 / 2}=20.9 \mathrm{~ms}^{-1}
\end{aligned}
$$

[20.9 ms^{-1} at 60.3° below the $+x$ axis]

$$
\begin{aligned}
v & =\left(v_{x}^{2}+v_{y}^{2}\right)^{1 / 2} \\
& =\left(10.4^{2}+18.15^{2}\right)^{1 / 2} \\
& =20.9 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& v_{0 y}=v \sin 30^{\circ}=6.00 \mathrm{~ms}^{-1} \\
& v_{0 x}=v \cos 30^{\circ}=10.4 \mathrm{~ms}^{-1}!
\end{aligned}
$$

$$
\theta=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)
$$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{v_{x}}{18,15}\right) \\
& =60.2^{\circ} . \\
& 10.4
\end{aligned}
$$

16.8 m
d) the maximum height of the ball. is when $v_{y}=0$;

$$
s=\frac{-u^{2}}{2 g}=\frac{-(6.00)^{2}}{2(-9.8)}=1.8367 \mathrm{~m}=1.84 \mathrm{~m}
$$

$$
\therefore \text { MAx HEIGHT }=15.0+1.84=16.8 \mathrm{~m}
$$

50. A sphere is projected horizontally. The sphere is photographed at intervals of 0.10 s . The images of the sphere are shown against a grid on the diagram. Air resistance is negligible.
(a) Use data from the diagram to determine the acceleration of free fall. [$9.7 \mathrm{~ms}^{-2}$]
From first to last point takes 0.60 s . DISTANT COVERED IS 1.75 m .

$$
\text { using } s=\frac{1}{2} a t^{2}
$$

$$
\Rightarrow \begin{aligned}
& \Rightarrow a=\frac{2 \mathrm{~s}}{t^{2}}=\frac{2(1.75)}{(0.60)^{2}}=9.722 \mathrm{~ms}^{-2} \\
& \begin{array}{l}
\text { (b) Determine the speed of the } \\
\text { sphere } 1.2 \mathrm{~s} \text { after release. }
\end{array}=9.7 \mathrm{~ms}^{-2}
\end{aligned}
$$

[12 ms^{-1}] 0.

$$
\begin{aligned}
N & =1+a t \\
& =(9.7)(1.2) \\
& =11.64 \mathrm{~ms}^{-1}=12 \mathrm{~ms}^{-1}
\end{aligned}
$$

(c) On the grid, draw the path of the sphere assuming air resistance is not negligible.

Slope is stepper at all points and no l sager
a true parabola.
51. A golfer hits a golf ball at point A on a golf course. The ball lands at point D as shown on the diagram. Points A and D are on the same horizontal level. The initial horizontal component of the velocity of the ball is $20 \mathrm{~m} \mathrm{~s}^{-1}$ and the initial vertical component is $30 \mathrm{~m} \mathrm{~s}^{-1}$. The time of flight of the golf ball between point A and point D is 6.0 s . Air resistance is negligible. Calculate:
a) the maximum height reached by the golf ball.

[45 m]

TIME TAKEN TO REACH MAXIMUM HEIGHT $=2.0 S$

$$
S=\frac{4+\gamma^{\prime}}{2} t=\frac{30}{2}(3.0)=45 \mathrm{~m}
$$

b) the range of the golf ball.

$$
\begin{aligned}
v_{x}=\frac{s}{t} \Rightarrow \quad s & =v_{x} t \\
& =(20)(6.0) \\
& =120 \mathrm{~m}
\end{aligned}
$$

52. A girl stands at the edge of a vertical cliff and throws a stone vertically upwards. The stone leaves the girl's hand with a speed $v=8.0 \mathrm{~ms}^{-1}$. Ignore air resistance and determine:
a) the maximum height reached by the stone.
[3.3 m]

$$
\begin{aligned}
& x^{2}=u^{2}+2 a s \\
& S=\frac{-u^{2}}{2 g}=\frac{-(8.0)^{2}}{2(-9.81)}=3.26 m=3.3 \mathrm{~m}
\end{aligned}
$$

b) the time taken by the stone to reach its maximum height. [0.80 s]

$$
s=\frac{u+v}{2} t \Rightarrow t=\frac{2 s}{u+v}=\frac{2(3.3)}{8.0}
$$

$$
=0.825=0.83 \mathrm{~s} \text { * slightly different } \begin{aligned}
& \text { answer based on } \\
& \text { method used. }
\end{aligned}
$$

c) The time between the stone leaving the girl's hand and hitting the sea is 3.0 s . Determine the height of the cliff. [21 m]
WHEN GOING DOWN, $N=-8.0 \mathrm{~ms}^{-1}$ AT EDGE OF CLIFF, ANS
IT TAKES 3.0-1.E $=1.4 \leq$ TO TRAVE FROM ERR OT CLIT

- THE SEA

$$
s=u t+\frac{1}{2} g t^{2}=(8.0)(1.4)+\frac{1}{2}(9.81)(1.4)^{2}=20.81 \mathrm{~m}=21 \mathrm{~m}
$$

53. A ball is projected from ground level with a speed of $28 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 30° to the horizontal as shown below.

There is a wall of height h at a distance of 16 m from the point of projection of the ball. Air resistance is negligible. Calculate the initial magnitudes of:
a) the horizontal velocity of the ball;

$$
\begin{aligned}
v_{x}=v \cos \theta & =(28)\left(\cos 30^{\circ}\right) \\
& =24 \mathrm{~ms}^{-1}
\end{aligned}
$$

b) the vertical velocity of the ball.

$$
\begin{aligned}
v_{y}=v \sin \theta & =(28)\left(\sin 20^{\circ}\right) \\
& =14 m s^{\circ}
\end{aligned}
$$

c) The ball just passes over the wall. Determine the maximum height of the wall.
[7.1 m]
Time to reach wall: $v_{x}=\frac{s}{t} \Rightarrow t=\frac{s}{n_{x}}=\frac{16}{24}=0.67 \mathrm{~s}$.

$$
\begin{aligned}
S=u t+\frac{1}{2} g t^{2} & =(14)(0.67)+\frac{1}{2}(9.81)(0.67)^{2} \\
& =7.18 \mathrm{~m}=7.2 \mathrm{~m} \rightarrow \text { sliptly win end }
\end{aligned}
$$ ausurat based on method usenet.

